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A one-dimensional Stefan problem involving severai phases (solid, liquid, vapor) which can 
appear and disappear is considered. A numerical method for such problems is described and 
numerically tested. It is derived from a previous method of the same authors for one-phase 
problems. It is a front-tracking method based on finite elements in space and time. The 
treatment of the boundary conditions and the computation of the moving boundaries 
guarantee the exact conservation of heat energy. The numerical experiments demonstrate the 
accuracy and efficiency of the method. Moreover, they show that the appearing interfaces 
start smoothly with a vanishing initial speed; to the authors‘ knowledge, this property has not 
been mathematically proved. 

1. INTRODUCTION 

Many numerical methods are available for solving Stefan problems (see the 
references contained in [6,9, 10, 12, 131). Front-tracking methods can provide a 
better accuracy than methods which avoid the explicit computation of the front; but 
they have been applied only to relatively simple cases. In this paper, we consider a 
one-dimensional multiphase Stefan problem involving the appearance and disap- 
pearance of certain phases. In order to solve such problems with great accuracy, we 
extend and modify the third order accurate front-tracking method of [ 11. The 
extensions concern the nature of the boundary conditions, the existence of several 
phases and the fact that the phases can appear and disappear. The modification 
concerns the treatment of the boundary conditions in order to make the scheme con- 
servative. 

We give a complete description of this revised method. It is based on finite 
elements in space and time. The position of the moving boundaries and the times of 
appearance and disappearance of each phase are explicitly computed. At each time 
step, the approximations are discontinuous and the finite elements can be arbitrarily 
chosen. A curved triangular element is used for each appearing or disappearing 
phase, while curved trapezoidal elements are used elsewhere. In each phase and at 
each time step, the number of finite elements is chosen according to the size of the 
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corresponding domain: it increases for an expanding phase and decreases for a 
shrinking phase, so that all elements have approximately the same size throughout the 
computation. 

Numerical experiments are described for two cases of a multiphase Stefan problem. 
The results obtained for different choices of the “mesh-size” are presented in tables. 
The comparison of these results show that the temperature, the times of appearance 
and disappearance of each phase and the position of the moving boundaries are easily 
computed with a relative error of the order of 10-j: in the first case, which involves 
two moving boundaries, it is sufficient to take approximately 20 elements in the 
average at each time step; in the second case, which involves only one moving 
boundary, it is sufficient to take approximately 10 elements at each time step. For 
each of these problems, we have also studied the speed of propagation of the moving 
boundaries especially near the time of their appearance: the numerical results show 
that the moving boundaries start smoothly with an initial speed equal to zero. To the 
authors’ knowledge, a rigorous proof of this property has not yet been given. (See 
[ 2, 3, 111 for mathematical results concerning the appearance and disappearance of 
phases.) 

The plan of this paper is the following. In Section 2, we describe the problem that 
we want to solve. In Section 3, we give the principle of our Galerkin-type numerical 
method. In Section 4, we give the details concerning the use of finite elements. 
Finally, Section 5 is devoted to the numerical experiments. 

2. A MULTIPHASE STEFAN PROBLEM 

In this section, we introduce the problem that we want to solve. We first give a 
physical description of this problem. Then, we give a mathematical formulation. 
Finally, we derive an integral relation which admits the classical law of energy 
conservation as a particular case. 

2.1. Physical Description of the Problem 

We consider an infinite wall, i.e., a solid material which fills the region 0 < x < a, 
where x is the space coordinate in the direction perpendicular to the wall and a is the 
thickness of the wall. We assume that the problem has slab symmetry: i.e., all the 
functions that we consider depend only on x and t, where t is the time variable. 

The temperature of the wall at the initial time t = 0 is given. Then, the wall is 
heated from the right by means of a given heat flux which is imposed on the right 
side of the wall (x = a). The left side of the wall is thermally isolated; i.e., the heat 
flux is equal to zero for x = 0. The following phenomena take place. 

Appearance of a Liquid Phase (time t = t,,,) 
When the temperature on the right side of the wall reaches the melting temperature 

of the solid, a liquid phase appears. Assuming that the density of the liquid is equal 
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FIG. I. The wall before and after the appearance of the liquid phase. 

to the density of the solid, there is no displacement of the material: the solid lies in 
the region 0 < x < a,(t) and the liquid lies in the region a,(t) < x < a, where x = a,(t) 
is the position of the interface (see Fig. 1). The interface moves to the left and the 
temperature increases at any fixed point. 

Vaporization of the Liquid and Disappearance of the Solid Phase 

There are two possible cases. 

Case 1 (vaporization). At a time t = t,, before the complete melting of the solid, 
the temperature of the liquid on the right boundary (x = a) reaches the vaporization 
temperature. Then, the liquid is vaporized on the right side and there appears an 
interface x = a2(t) which separates the liquid from the gas. Assuming that the gas is 
removed as soon as it appears, there remains only two phases: the solid which lies in 
the region 0 < x < al(t) and the liquid which lies in the region a,(f) <x < a,(t) < a. 
(See Fig. 2). 

Ultimately, the interface x = al(t) reaches the left side of the wall (x = 0); then, the 
solid phase disappears and the wall collapses (time t = tf= final time). 

FIG. 2. The wall after the appearance of the vapor (Case 1). 
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Case 2 (no vaporization). When the interface x = al(t) reaches the left side of the 
wall, the temperature on the right side of the liquid has not yet reached the 
vaporization temperature. The solid phase disappears (time t = tf) before vaporization 
occurs. 

2.2. Mathematical Description of the Problem 

We will describe the problem in the case when vaporization occurs (Case 1). The 
other case is simpler and follows directly from Case 1 by removing the liquid-vapor 
interface. 

We use the following notation. 
The indices 1 and 2 correspond to the solid and liquid phases, respectively. 

u denotes the temperature. 
Independent variables: x, t. 
Data: 

u, = melting temperature. 
u,, = vaporization temperature, u, < u,. 
{a, c,, c2, K,, K,, C,, C,} = set of positive constants. 
F(t) = positive function defined for t > 0. 
U’(X) = function defined for 0 <x < a, such that u’(x) < U, for all x. 

The physical significance of these data is the following: c = heat capacity per unit 
volume, K = heat conductivity, C, = latent heat of fusion per unit volume, 
C, = latent heat of vaporization per unit volume, F(t) = heat flux on the right side of 
the wall, u”(x) = initial temperature distribution. 

Unknowns : (i) (t,, t,, tf} = three values of the time, 0 < t, < tts < tf. 
(ii) {u,(t), a,(t)} = two continuous functions defined for t, < t < tf and for 

t, < t < tf, respectively, and which satisfy the conditions 

0 < al(t) < a, for t, < t < tf, 

0 < a,(t) < u*(t) < a, for t,. < t ( tf, 

alp,) = a&J = a, u,(t,> = 0. 

(iii) U(X, t) = continuous function defined for 0 <x <a, 0 < t < t,, and for 
0 < x < a,(t), t, < t < tf and continuously differentiable in each of the two following 
domains: 

(See Fig. 3.) 

91 = {(x, t); 0 < x < a, 0 < t < t, } 
u {(x, t); 0 < x < q(t), t, < t < tf), 

~~={(x,t);a,(t)<x<a,t,<t~t,,} 

u {(x, t); a,(t) < x < a&), t, < t < tf}. 
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FIG. 3. The domain of definition of the function u. 

We will denote by GFO, %Y, and gz the curves detined by x = 0, x = a,(t) and 
x = a*(t), respectively. We will also use the notation 

= the derivative $ in Sj, j= 1 or 2. 

This distinction is essential at a point located on the interface g,. At other points, it 
is useless and may be omitted. 

With these notations, the equations of the problem are the following. 

Partial dlflerential equation for u(u, t). 

c.%-j&L-() 
J at J ax2 in Sj, j = 1 and 2. 

Initial condition. 

u(x, 0) = uO(x), for 0 < x < a. 

Boundary conditions. 

au 
-0 

ax- 
on FO. 

K, g = F(t), forx=a,O < t < t,. 

K, g = F(t), forx=a,t,<t<t,. 

u = ll, on g, . 

u = u, on gz. 

P-1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 



362 BONNEROT AND JAMET 

Dl@rential equations for a,(t) and a,(t). 

Initial conditions for al(t) and a2(t). 

a,@,) = a&J = a. 

Conditions for t, , t,, tr. 

u(a, 1,) = u,, Nay t,> = uL,, 

on SF,. 

on5F1. 

a,(t,> = 0. 

(2.8) 

Remark. If we assume that the solution u is such that each function (&/ax), and 
(au/ax), is continuous at the points which correspond to the appearance of a phase, it 
follows from (2.4), (2.5), (2.8) and (2.9) that 

da,/dt = 0, for t= t,, 

da,ldt = 0, for t = t,; 
(2.10) 

i.e., each interface starts with a speed equal to zero. This is not a mathematical proof 
since the continuity of (au/ax), and (au/ax), should be proved. 

We will see that relations (2.10) are in accordance with the numerical results. 

2.3. Relation of Conservation 

Let u be a function which satisfies 

&K&&J 
at a2 in a region 9. 

Let G be an arbitrary subdomain of 5%’ and let aG be the boundary of G counter- 
clockwise oriented. 

Let Q(G) = Lip G= the set of all Lipschitz-continuous functions defined on the 
closure of G and let us assume u E Q(G). 

Then, a classical integration by parts yields 

- li G 

cu$dxdt+jj Ke*dxdt G ax ax 

- for all rp E Q(G). 
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In particular, for q~ = 1, we get the relation of conservation: 

- J ( cudx +K;dt = 0. 
8G 

(2.12) 

We will apply this relation to the multiphase problem of Section 2.2. 
Let r and r’ be two values of t such that 0 <r < r’. Let us assume that the two 

moving boundaries g, and gz exist at the times r and t’, i.e., t, < t < r’ < tf, which is 
the more complicated case. Let G, , G, , r,, , r, and r, be the intersections of &Z?‘,, 5Pz , 
qO, q, and @I respectively, with the strip r < t < r’. Let Qj and J2; be the intersections 
of ,5Pj with the lines t = r and t = 7’, respectively, for j = 1 and 2. Let r,, , r,, Tz be 
oriented towards increasing values of t and ~2,) a,, J?l, , Q; be oriented towards 
increasing values of x (see Fig. 4). 

The application of (2.12) to each of the domains G, and G, gives 

+- 
J 

Kj;dt- Kjgdt=O, 
i 

for j = 1 and 2. (2.13) 
rj-l rJ 

On the other hand, the integration of (2.8) and (2.9) between the times t and r’ 
gives 

(2.14) 

!,,Z& (~)~dt=i’F(t)dt+C,,du*, (2.15) 

with Auj = ai - uj(r), j = 1 or 2. Adding the two relations (2.13) corresponding to 
j = 1 and 2 and taking (2.14) and (2.15) into account, we get 

+K, I 
au 
-dt-C,Aa,-C,Aa,= *’ 

l-0 c% I 
’ F(t) dt. 

T 

X 

FIG. 4. The subdomains G, and G, and the oriented portions of their boundaries. 

(2.16) 
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But, au/ax = 0 and dx = 0 on r,, u = u, on r1 and u = u, on r, (Eqs. (2.3), (2.6) 
and (2.7)). Finally, the relation of conservation can be written in the form 

E,+E2+E)+Eq+E5=Es, (2.17) 

with 

El=cl [~~;udx-~~,udx-u,da,] 

Ez=cz [~~~udx-~o~udx+u,Aa,-u,,Aa~] 

E, = -C, Au,, E, = -C, Au,, 

E, = 
I 

K,gdt=O, E, = 
I 

=’ F(t) dt. 
ro T 

The physical significance of these terms is the following. 

E, = Energy used to heat the solid. 
E, = Energy used to heat the liquid. 
E, = Energy used to melt the solid. 
E, = Energy used to vaporize the liquid. 
E, = Loss of energy on the left boundary. 
E, = Energy provided on the right boundary. 

The way in which we have derived the classical relation of conservation (2.17) 
from the integral relation (2.11) will be useful for finding a conservative numerical 
scheme, i.e., a scheme which yields approximations which satisfy the relation of 
conservation (2.17) exactly. 

3. GENERAL DESCRIPTION OF THE NUMERICAL METHOD 

In this section, we give the basic principles of our numerical method. Since each 
phase is treated separately, we first describe the method in the case of a one-phase 
problem. Then, we describe its application to the multiphase problem of Section 2. 

3.1. A General One-Phase Problem 

We consider a general one-phase problem in a given variable domain. 
Let 9 = ((x, t); aL(t) < x < a,(t), t > 0}, where aL(t) and a,(t) are two given 

continuous functions of t. Let VL and qR denote the left and right boundaries of 9, 
i.e., the curves x = a,(t) and x = a,(t), respectively. Let c and K be two positive 
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constants; f a given function defined in 9; u,(x) a given function defined for 
a,(O) < x < a,(O); and a,, j?, , g, , aR , /3,, g, six given functions of t defined for t > 0 
and such that la,(t)1 + 1/3,(t)] > 0 for t > 0 and s = L and R (i.e., a, and j3, do not 
vanish at the same time). 

We want to solve the following problem. 

u(x, 0) = u”(x) for a,(O) < x < aR(0), (3.2) 

on gS’,, for s=L and R. (3.3) 

Let {t”; II > 0) be a sequence such that to = 0 and t” < 1”’ ’ for all n. Let G”, rz, rz, 
LP, an+* be defined as indicated on Fig. 5 in the same way as the similar sets defined 
in Section 2.3. Let 

B:(% 9) = 1 wrpdt, for s=L,R, (3.4) 
r: 

and for any integrable functions w and IJI defined on rf. 
Then, the integral relation (2.11) applied to the domain G” can be written in the 

form 

for all functions 9 E @(G”), with 

+ 
j 

cup dx + 
1 

cup dx - 
nIli ri! 1’ 

cuq dx, (3.6) 
ri 

JP(U, J 9) = I,,” cu9 dx + il,“f9 dx dt. (3.7) 

FIG. 5. The subdomain G” and the oriented portions of its boundary. 
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3’(~, q) is a bilinear form which involves the values of u for t” ( t < Pi-l. 
B:(&/c?x, (0) is a bilinear form which involves the boundary values of the 

derivative au/ax for t” < t < t”+‘. 
M’“(u, f, o) involves the values of u for t = t”. 
On the other hand, Eqs. (3.3) yield 

for s=L,R, (3-g) 

and for all functions a, E Q(c), where Q(c) denotes the set of all Lipschitz- 
continuous functions defined on ri. 

Our numerical method is based on the integral relations (3.5) and (3.8). 

3.2. A General Conservative Numerical Scheme 

Let u be the solution of problem (3.1), (3.2), (3.3). We want to compute an 
approximation of u on .5@ and an approximation of the boundary derivatives i3u/axll 
and au/ax\, on 5?YL and Pa, respectively. Let us denote these approximations by uh, 
(Wh,, and KWh,, . At each time step, we know the values of uh at the time t” and 
we want to compute the values of uh, (Du),,, and (Du),,, for t” < t < t”’ ‘. 

Let @,(G,) and @,#t) be finite dimensional subspaces of @(G”) and @(T:), 
respectively, with s = L and R. By a method that we will specify below, we determine 
three functions, vh E Qh(Gn), w~,~ E @,#‘i) and w~,~ E @#z); then, we take 

Uh = Vh and (Duht,, = wh,s, s = L and R, for t” < t < tnt’, (3.9) 

Remarks. Before specifying how we determine the functions vh and w~,~, we 
make two remarks: 

(i) It follows from (3.9) that the function uh is continuous in the strip 
t”<t<t”+’ (since the function vh is continuous in the strip t” < t < P+ ’ by 
definition of the space @(G”)). But, in general, the two functions uh and vh do not 
coincide at the time I = t” and therefore the function uh is discontinuous at the time 
t”. We will note uz = u,J., t”) and 

4+’ = vh(., t”) = lim{u,(., t” + E); E > 0, E + O}. 

(ii) Assuming that the function vh admits a derivative &,/ax on the boundary 
rf, the function wh,S does not in general coincide with &,/ax on ry. Hence, 

where au,Jlaxl, denotes the restriction to gS of the derivative &,/ax for s = L and R. 
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Determination of the Functions v,, and whVs 

We solve the following problem. 

Find v,, E @,,(Gn) and w*,~ E @&‘i) for s = L and R such that: 

avh 3 Ph) + W(Wh,, 9 vlh) - KBXw,,., 3 P/J = -@‘“(u;: 5 eL a),J, 

for all ph E @,,(Gn), and 

BXa, vh + & wh,s, qh,s ) = B,“k,, (4h,sb 

for all (P~,~ E Qh(c), s = L and R. 

(3.10) 

(3.11) 

Equations (3.10) and (3.11) represent a system of linear algebraic equations with a 
square matrix. The number of equations and the number of unknowns are equal to 
the sum of the dimensions of the three spaces Qh(Gn), Qh(ZJ and Qh(c). 

Particular Case 

Assume: 

(i) The coefficients a, and /I, are constant, for s = L or R. 
(ii) We choose Qh(c) equal to the trace space of Qh(Gn), i.e. the space of the 

restrictions to c of the functions oh E Qh(Gn). 

Then: 

- If g, E Qh(c), Eq. (3.11) is equivalent to 

as vh + Ps wh.s = gs on l-1. (3.12) 

- If g, 6C Qh(rf), Eq. (3.12) holds with g, replaced by its projection g,,, on the 
space Qh(r:) with respect to the inner product defined by (3.4). 

These statements follow at once from the observation that, under the foregoing 
assumptions, we have a, vh + p, wh,S E Qh(c). 

Notation. We will denote by (Du), the function defined on rt Ur”, such that 

(Du)h = (Du)h.s on rz, for s = L and R. 

Conservativity of the Scheme 

Let us choose the space Qh(Gn) so that it contains the functions ph which are 
constant. Then, taking v)~ identical to 1 in (3.10) and using (3.9), we get 

-j 
t3G” 

(ah dx + K(Du), dt) = jj f dx dt. 
G” 

(3.13) 

Hence, the solution of the discrete problem (3.10), (3.11) satisfies a relation of 
conservation analogous to (2.12) in each subdomain G”. 
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Remarks. The way in which we approximate the derivative &/ax on the boun- 
daries is related to a method of Douglas et al. [5]. 

The choice of a space of test functions which contains the constants in order to get 
a conservative scheme was proposed by the authors [8] for solving the system of 
conservation laws of inviscid compressible flow. Time discontinuous Galerkin-type 
approximations for parabolic problems were proposed in 171. 

3.3. Application to the Multiphase Problem 

Now, we consider the multiphase problem of Section 2. We assume that the 
problem has been solved until the time t” and we describe a method to solve it until 
the time t”+‘. We assume that the two moving boundaries ‘6, and 5Yz exist at the times 
t” and t”+ *. The treatment of appearing and disappearing phases will be described in 
detail in the next section. 

Step 1 

First, we assume that the moving boundaries are known. In each phase, we have to 
solve a problem of the form (3.1), (3.2), (3.3) with the boundary conditions given by 
(2.3), (2.6) and (2.7). 

For each phase, let us define the sets Gj”, q- I = J”.l., r: = rJ’, , J2J’ and 12:’ ‘, for 
j = 1 and 2, as in Section 3.2. (The notations are the same as in Section 2.3, except 
for the index n which has been added since (5, r’) = (t”, t”+ ‘). See Figs. 4 and 5.) Let 
Qh(Gy) and @,(rJ’,) be finite dimensional subspaces of @(G,“) and Q(c)) for j = 1, 2 
and j’ = 0, 1, 2, which satisfy the following hypotheses. 

(HI) Each space @,,(I”,) is equal to the trace space of the corresponding space 
Qh(Gjn) on q, (in particular, the trace spaces of Qh(G:) and @,,(Gi) on r: are both 
equal to @#)). 

(H2) The spaces @,,(Gj’) contain the functions which are identical to constants. 

Notation. For each domain Gj”, we denote 

i$’ = closure of Gy, 

q = Gj” - a” = {(x, t); (x, t) E Gy, t” < t < t”+ ‘}. 

We will also denote by FJ the closure of IJ’. 
The application of the method of Section 3.2 to each of the phases gives 

(uh)j = approximation of u on Gy, 

au 
(Du)~,~ = approximation of - ( 1 ax j 

onq-,Vq. 

According to the particular case of Section 3.2, hypotheses HI and H2 imply that 
(u,& = (u,Jz = u, on r;l. Pence, taking u,, = (u,,)~ on Gy, we get a function u,, which 
is defined and continuous on 67 u G;. 
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Step 2. Approximation of the moving boundaries 

The moving boundaries %Y, and gz are determined by the differential equations 
(2.8) and (2.9) which are of the form 

(3.14) 

with a = aj, j = 1 or 2 and ST =q= a functional which involves the values of 
(&/ax), and (&/ax), on q. 

For each n > 0, let ,Yh(tn, t”“) be a finite dimensional space of continuous 
functions defined on the interval [t”, t”+’ 1. We want to approximate each function 
a(t) by a continuous function a,,(t) which coincides with a function of Yh(tn, t”“) on 
each interval [t”, t”+ ‘1. At each time step, the initial value ah(f) is known and we 
must dtermine the values of a,, for t” < t < tat’. 

Let us replace Eq. (3.14) by 

obtained by replacing (&/ax), and (au/ax), by their approximations in the right- 
hand-side member of (3.14). Then, a,, is determined by computing an approximate 
solution of (3.15) which belongs to the space Yh(tn, t”+‘). The numerical method 
used for computing ah in relation with a particular choice of the space Yh(t”, t”“) 
will be specified in the next section. 

At each time step, the numerical solution of the complete multiphase problem 
involves iterations based on Steps 1 and 2. The iterations are started by making an 
initial guess for the moving boundaries. 

Conservativity 

Assume that, for each boundary 9, and gz, the approximate solution a,, of 
Eq. (3.15) satisfies 

a,,(t”+‘) -a,(f) = !“@‘F((Du),,,, (Du)*,~, t) dt. 
t” 

Then, the approximate solution u,, satisfies the conservation relation (2.17) 
exactly. 

ProoJ In each phase the discrete relation of conservation (3.13) is satisfied; it 
can be written in a form analogous to (2.13). Moreover, the condition (3.16) is the 
discrete analogue of (2.14) and (2.15). Finally, hypotheses Hl and H2 imply that the 
boundary conditions (2.3), (2.6) and (2.7) are satisfied exactly, according to the 
particular case of Section 3.2, i.e., (Du)~,~ = 0 on rt, u,, = u, on ry and u,, = U, on 
c. The conservation relation (2.17) follows for the function u,, as is Section 2.3. 
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Use of Numerical Quadrature Formulae 

Instead of computing the exact value of the integrals which are involved in the 
definition of the functionals SC@‘“, 9’ and By (formulae (3.7), (3.6) and (3.4)), we will 
use numerical quadrature formulae. Then, if the assumptions Hl, H2 and (3.16) are 
satisfied, the approximate solution uh satisfies an approximate form of the conser- 
vation relation (2.17) in which the integrals have been replaced by their approximate 
value. But, we will choose the quadrature formulae in such a way that the integrals 
involved in this relation are computed exactly. In this case, despite the use of 
quadrature formulae, the approximate solution u,, satisfies the conservation relation 
(2.17) exactly. 

A choice of numerical quadrature formulae which satisfy this property in relation 
with the choice of the discrete function spaces will specified in the next section. 

4. FINITE ELEMENTS 

In the previous section, we have described the principle of a numerical method to 
solve the problem of Section 2. In order to determine this method competely, it 
remains to specify the following points: 

- choice of the discrete function spaces, 
- choice of the numerical quadrature formulae, 
- choice of a numerical method to solve the differential equation (3.15) 
- algorithm for solving the system of discrete equations, 
- special arrangements concerning the computation of appearing and disap- 

pearing phases. 

This section is based on finite elements in space and time. 

4.1. Choice of the Discrete Spaces 

First, we take the space Ph(tn, t”+’ ) equal to the space of all functions defined in 
the interval [t”, t”+ ’ ] which coincide with a polynomial of degree <2. Hence, each 
moving boundary is approximated in the interval [t”, t”+ ’ ] by an arc of parabola ry 
of the form x = a,,(t), where a,(t) is a polynomial of degree <2. 

The definition of the spaces @,,(GJ’) and @#y) is based on a partition of each of 
the domains G; and G: into isoparametric quadrilateral finite elements of type (2) 
(see [4, p. 23 1 I), according to the method of [ 1 ] that we will recall. 

Let ai denote the set of the finite elements which correspond to the time step n. 
Each element K = KY E &?Z admits two vertices P?+’ and P?,‘p on the line t = t” and 
two vertices Pl+’ and Pyz,’ on the line t = tnf ‘, where i is a space index. The vertices 
Pl+O of the elements KY E Ki should not be confused with the vertices Py of the 
elements KY-’ E ai-’ corresponding to the previous step; at each time step, the 
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FIG. 6. A finite element KY 

choice of the finite elements is arbitrary and can be made without any connection 
with the choice of the finite elements at the previous step; hence, the vertices P; and 
Prto may be distinct. Each element KY admits two straight sides P~toP~~f and 

Pr “PI:, and two curved sides P-l and Pm;. Each curved side Pw’ 
is common to two adjacent elements KY-, and KY; it is an arc of parabola of the form 
x = xi(t), where xi(t) is a polynomial of degree <2. (See Fig. 6). 

Each point P = (x, t) E KY can be characterized by means of two parameters c and 
11 defined by 

5= 
x - x!(t) t - t” 

xi+ ICr) - xi(t> ’ 
v= pt I -p * (4.1) 

This formula defines a one-to-one correspondence between the points P = (x, t) of 
the element KY and the points P = (r, r) of the square I? = {(l, v); 0 < < ,< 1, 
0 ,< q ,< 1). Let us denote by Pi+u “” the nine points of the element KY which 
correspond to r = p and q = V, with fi and v equal to 0, i or 1. These points are called 
the nodes of the element KY. 

Let Q*(K) be the space of all functions defined on the element K = KY which can 
be written in the form of a polynomial q&, a) of degree <2 with respect to each of 
the variables c and q separately. We choose the spaces @,, in the following way, 

@,,(GJ’) = the space of all functions defined and continuous on @, for j = 1 and 2, 
and such that their restriction to each element K belongs to Q,(K). 

Qh(rJ’) = the space of the traces on J” of the functions of 
@,,(Gy) or @JGy), for j = 0, 1,2, 

= the space of all functions defined on ry which coincide 
with a polynomial p2(t) of degree 42. 

The functions of Qh(GT) and @,(ry) are uniquely determined by their values on the 
set of the nodes Py::‘,” which belong to @’ and c’, respectively. 

Note that the spaces @JGJ) and Q,(c) contain the constant functions. The 
hypotheses HI and H2 of Section 3.3 are satisfied. 
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4.2. Numerical Quadrature Formulae 

For each element K, we use the following quadrature formulae in which y is an 
arbitrary function defined on K and I&+‘,” = y(Py$,“). 

(a) Integrals with respect to x for fixed t: 

t”+ “) dx - J; + “(y), 

with 

J;+“(y) = b(x;,‘; -X;+“)(y;+” + 4lJ/;$ + y;;;‘> 

(Simpson’s rule). 
(b) Integrals along the curved sides of the elements K: 

p?+’ 

I, 
’ 

pv+o 
v/(xi(t), t) dt - {(t”+’ - t”)(y~+” + 4yl;+ I” + WY+ ‘). 

(c) Integrals in K: 

(4.2) 

. . 
J! ~(x, t)dxdt-;(t”+‘- t”)(J;+“(iy) + 4J;+“‘(yl) +J;+“‘(y/)). 

KY 
(4.4) 

Note that the quadrature formulae (4.2) and (4.3) are exact for all functions v/ 
which belong to Q2(K). 

4.3. COMPUTATION OF THE MOVING BOUNDARIES 

Following the general method described in Section 3.3, we want to approximate the 
solution Z(t) of the differential equation (3.15) in the interval [t”, Pi ‘1 by a function 
a,, E Yh(tn, tntl), i.e., a polynomial of degree ,<2. Such a polynomial is uniquely 
determined by its values for t = t” + “, v = 0, 4, 1. The initial value of a,(t) for t = t” is 
known. Therefore, it is sufficient to compute a,(t”’ “) for v = 4 and 1. 

The differential equation (3.15) with the initial condition C(P) = a,(t”) yields 

c?(t”+“) = a,,(t”) + fn“‘Y((Du),,,, (Du),,,, t) dt, (4.5) 
I” 

where the integrated function is equal to 

S”;((DU),,,, (hi),,,, t) = (K,@)I.h -K,(~u)w)/Cm~ 
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on the moving boundary g,, and 

on the moving boundary ql. 
The functions (Da), ,h and (Du)~,~ are equal to polynomials of degree <2 in the 

interval [t”,t”+‘]; h f t ere ore, it is easy to integrate them exactly. Let us assume that 
the function F(t) can also be integrated exactly. Then, we compute the right-hand-side 
member of (4.5) exactly and we take 

uh(tn+“) = ci(t”+y for v=i and 1. (4.6) 

Relation (3.16) is satisfied; therefore the approximate solution u,, satisties the 
conservation relation (2.17) exactly in the interval [t”, t”“]. 

If the function P(t) cannot be integrated exactly, the conservation relation (2.17) is 
satisfied with the right-hand-side member E, replaced by its approximated value. 

4.4. Algorithm for Solving the Discrete Problem 

At each time step, we use an iterative procedure to solve the system of algebraic 
equations corresponding to the discrete problem. Each iteration consists of two steps 
as indicated in Section 3.3. We will consider each of these steps separately and 
indicate the initial guess used for starting the iterations. 

Step 1: Computation of the Functions u,, and (Du),, 

Assume that the moving boundaries are given for t” < t < t”+ ‘. For each of the 
domains G: and G;, we must compute the functions v,,, w,,~ and w,,~ which satisfy 
Eqs. (3.10) and (3.11). Since these functions are uniquely determined by their values 
at the nodes, we can write .Eqs. (3.10) and (3.11) in terms of the nodal values. 

Let C” denote the set of the nodes of all elements K E gi and let Ij = Zj(n) be the 
number of elements K E Wi which are contained in Gy, for j = 1 or 2. For each 
domain Gj”, we have r: = q-, , q = ry and the unknowns are 

-the values of v,, at the nodes P E Z” n Gy, i.e., 3(21, + 1) unknowns, 
-the values of w~,~ at the nodes P E Z’” n FT-, , i.e., 3 unknowns, 
-the values of w,,~ at the nodes P E Z” f’ 77, i.e., 3 unknowns. 

Writing Eqs. (3.10) and (3.11) for each of the functions v)~, ph,r. and P,,,~ which 
are equal to 1 at one node and vanish at the others, we get a system of linear 
algebraic equations with a square matrix of order 61j + 9. This system is solved by 
means of Gauss method arranged in a way which takes advantage of the band 
structure of the matrix (see Appendix 1 of [l] for the explicit expression of Eq. (3.10) 
in the case of interior nodes). 

Let us recall that, according to the particular case of Section 3.2, Eqs. (3.11) are 
equivalent to wheL = 0 on r:, v,, = u, on G and v,, = u,, on c. 
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For each domain G.7, we take uh = v,, on Gy, (Du)~,~ = w~,~ on ry-, and 
(Du)~,~ = w~,~ on rj’. 

Step 2: Computation of the Moving Boundaries 

For each moving boundary, we must compute the values of ah(t”+‘) for v = iand 1. 
Let af)(t”+“) be the values which have been computed at the iteration 1, where 1 is the 
iteration number. Let z&” and (Du)jf)l be the corresponding values of u,, and (Du),i,h 
which have been computed in Step 1. We compute aIf+“(tn+“) by means of an 
auxiliary value c$’ ‘)(t”+“) in the following way. 

c?ftl)(t”+“) = a,(t”) + f”“‘F((Du)$, (Du)$‘l,, t) dt, (4.7) 
t” 

a;l+ I)(ptv) = (1 _ w) ajf'(t"t") + w&y+ l)(p), (4.8) 

where LL) is a parameter, 0 < w < 1. 
It seems natural to take o = 1; but, in some cases, it is necessary to take w < 1 in 

order to get convergent iterations. The choice w = 0.5 has beeen satisfactory for all 
the computations that we have made. 

Iteration Start 

For starting the iterations, we choose the function ah as follows, 

-If n > 1, we extrapolate the values of a,, corresponding to the previous time 
step: i.e., we take ah equal to the same polynomial as in the interval [P’, t”). 

- If n = 0, we take aj,“‘(t) = a,,(O) + Sot, with So =sT((&‘/ax), , (au”/&),, 
0) = initial speed of propagation of the moving boundary. 

4.5. Appearance of a Phase 

A phase appears when the temperature on the fixed boundary x = a becomes 
superior either to the melting temperature u, or to the vaporization temperature 
u u ’ 

4Sa. Computation of the Time of Appearance of a Phase 
Let us consider the values uh(a, t”) computed on the fixed boundary x = a for 

increasing values of n. Let At” = tn+’ - t”. If, for a certain value of n and for a 
certain value At of the time step At”, we get 

uJa, t”) < u, < uJa, t” + At), 

the appearance of the liquid phase occurs in the time interval (t”, t” + At]. Then, we 
change the value of the time step At” in such a way that 

uh(a, t”+‘) = u,. (4.9) 
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The new value of t”’ ’ approximates the time t, at which the new phase appears. 
In (4.9) we take u,, equal to the function which has been computed with the first 

value dt of the time step At”. This equation is a polynomial equation of degree <2 
and it admits a unique solution t”+ ’ E (t”, t” + dt]. For simplicity, we do not iterate 
Eq. (4.9) by replacing a,, by the new computed function corresponding to the new 
value of the time step At”. The numerical experiments have shown that such iterations 
are unnecessary. 

We proceed in the same way for computing the time of appearance of the vapor 
phase (replace u, by u,.). 

4.5b. Computation of the Appearing Phase 

The computation of the temperature in the appearing phase must be done only for 
the liquid phase, since the vapor phase is eliminated as soon as it appears. 

Let t” be the computed value of the time at which the liquid phase appears. At the 
next time step, we want to compute the position a,(t) = a,,,(t) of the moving 
boundary in the interval (t”, t”+ ‘1 and the temperature uh in each of the phases. We 
use the general method of Section 3.3 in the following way. 

Choice of the space Qh(G:). The domain G; which corresponds to the liquid 
phase is approximated by a single curved triangular element K. The vertices of K are 
the points Py = P:,, = (a, t”), P; + ’ = (a,(t” + ‘), t”+ ‘) and Py:,’ = (a, t”+ ‘). The sides 
P!'P;:,' and Py + ‘Pl:, I are straight and coincide with the lines x = a and t = f”” 

I 
1 

a x 

FIG. 7. Appearance of the liquid phase: the curved triangular element K = c and the corresponding 
triangle d. 

?Rl!41’2 IO 
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respectively; the side is an arc of parabola x = x,(t) = a,(t) which coincides 
with the moving boundary (see Fig. 7). 

Each point P = (x, t) E K can be characterized by means of two parameters < and 
v defined by the formulae 

t - t” 
?= r=r 

x - Xi(f) 
p+l -tt” ’ a -xi(t) ’ 

(4.10) 

These formulae etablish a one-to-one correspondence between the points 
P = (x, t) E K and the points P = (t;, r]) of the triangle R = { (<, r); 0 < < < v < 1 }. Let 
us remark that the coordinates x and t can be written in the form of polynomials of 
degree <2 in < and n (since a -x((t) is a polynomial of degree <2 in t which 
vanishes for t = t”). 

Let Plf ‘1’ = (ah(t”’ ‘I’), t”+ ‘I’), P~~~12 = (a, tni ‘I’) and Pr:{2 = {(Pl”’ + Pl,+F) for 
v=i and 1, with tn-C1’2=f (t” + t”’ ‘). The seven points Py and Plz; for p E (0, $, 1) 
and v E {t, 1) are called the nodes of the finite element K. 

We choose the space QP,(G:) equal to the set of all functions q,, which are defined 
on K = @ and which can be written in terms of the variables < and v as a linear 
combination of the seven functions { 1, r, q, cz, &, q2, C(c - ~)r}. It is easy to check 
that an arbitrary function of Qh(GT) is uniquely determined by its values at the seven 
nodes of the element K. The element K is an example of a subparametric finite 
element. 

The spaces @Jr;) are chosen as in Section 4.1. 

Quadrature formulae. For computing the integrals in the triangular element K, 
we use the quadrature formula (4.4) with J”“(w) = 0. 

Let us remark that the corresponding quadrature formula in the triangle R is exact 
for all polynomials of degree <2 in < and r. This property may seem surpirising at 
first sight since the value of the integrated function at the origin does not appear in 
the formula. The reason is that the polynomial w(& 7) = (1 - 2r])(l - q) which is 
equal to 1 at the origin and vanishes at the other nodes of Z? admits a vanishing 
integral on R. 

Numerical solution of the discrete problem. Writing Eqs. (3.10) and (3.11) for the 
triangular domain G;1, we get a system of 13 linear algebraic equations whose 
unknowns are: 

-the values of v,, at the seven nodes of the element K = q, 

-the values of w~,~ at the three nodes located on c = c (moving boundary), 
-the values of w~,~ at the three nodes located on pR (fixed boundary). 

According to the particular case of Section 3.2, Eqs. (3.11) yield 

vh=u, on InL, wh,R = Fh@)/Kz on % 

where Fh is the projection of the function F on the space oh(PR). 
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The remaining unknowns are the values of v, at the four nodes which are not 
located on the moving boundary c and the values of w~,~ at the three nodes which 
are located on c. The corresponding system of equations is solved by Gauss method 
and we take: 

uh = vh on G;t and (W,., = %,s oncwiths=LandR. 

Let us remark that the function (Du),,, which approximates the derivative (au/&), 
on I’; u G admits two distinct limit values at the point Py since wLqL(P$‘) # whqR(Py) 
in general. 

Computation of the moving boundary. The moving boundary c is computed 
according to the method of Section 4.3, by means of the iterative algorithm of 
Section 4.4. For starting the iterations, we take 

a:“(t) = a - o(t - t”), (4.11) 

with u = BF(t”)/C,, where 19 is a parameter, 0 < 19 < 1. 
The choice of o is derived from formula (2.8). We have replaced the term 

K,(&/&), by its value on the fixed boundary given by (2.5) and the term 
K,(au/&), > 0 by zero. Thus, we get an upper bound for the speed of propagation of 
the moving boundary. But, if the coefficient (T of (4.11) is chosen too large, it happens 
that the following iteration sends the iterated moving boundary on the other side of 
the fixed boundary x = a and the computations cannot proceed. Therefore, it has been 
useful to introduce the parameter 6’. The choice B= l/10 has been satisfactory for all 
our experiments. 

Formula (4.11) is also used for starting the iterations of the appearing moving 
boundary gZ at the time t, at which vaporization occurs; then, C, must be replaced 
by C,, in the expression of a. 

4.6. Expansion, Reduction and Disappearance of the Phases 

4.6a. Choice of the Finite Elements According to the Size of the Phases 

In order to follow the evolution of each phase, it is necessary to take a variable 
number of finite elements. We proceed in the following way. 

For each of the domains Gf and Gy, we use nodes Pl’” which are equally spaced 
along each line t = Pi”. Let hi”+” denote the distance between two consecutive nodes 
p;+o and PI:: in Gy, for j = 1 and 2. Let h be a given positive number. The number 
Zj(n) of elements K E Gy is chosen equal to an integer power of 2, i.e., a number of 
the form 2p, p integer. This number is determined by the condition 

either h/2 < hj”+‘<h, 

or hJ+O = diam 0j’ < h/2, 
(4.12) 
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where diam s;rj” denotes the length of the interval QJ’ (in the second case of (4.12), we 
have rj(n) = 1). 

Thus, the number Ij(n) can be multiplied or divided by 2 at each time step if the 
domain Gy is expanding or shrinking (respectively). 

On the other hand, we choose the time step At” = t”+’ - t” sufficiently small so 
that the displacement AuJ’ of each moving boundary between the times t” and t”’ ’ 
satisfies 

\AaJl <h. (4.13) 

This condition prevents the finite elements from being too distorted. It is not a 
sharp condition and it need not be satisfied exactly at each time step. It could be 
replaced by other conditions which would limitate the distortion of the elements. This 
limitation is necessary for the accuracy of the method, but not for its stability. A 
mathematical proof of unconditional stability for a simplified problem is given in [ 7 ] 
and corresponding experiments are reported in [ 11. 

4.6b. Disappearance of a Phase 

In our problem, only the solid phase disappears. This phenomenon occurs when the 
free boundary %Yi meets the fixed boundary qO. The corresponding time tf is computed 
in the following way. 

At each time step, we extend to the time interval [t”, t”+‘] the arc of parabola G-’ 
which approximates the moving boundary 5Yr in the interval [f+‘, t”]. If this arc of 
parabola intersects the fixed boundary gO, the disappearance of the solid phase 
occurs in the interval (t”, t”+‘]. Th en, we change the time step At” so that the new 
value of P+ ’ corresponds to the intersection point (in case there would exist two 
intersection points, we would take the first one, i.e., the one which corresponds to the 
smallest value of t). This computed value of t”+ ’ approximates the final time tr. The 
values of the temperature u,, at the time rr are computed by the method of Sction 4.4 
applied to the domain G: which corresponds to the liquid phase. No computation is 
made in the domain G: which corresponds to the disappearing solid phase. 

Remark. The procedure for computing each of the times t,, t, and tf is based on 
quadratic extrapolation using values computed at the previous time step, which yields 
an error of order 3. If a similar error was made at each time step, the method would 
be only of order 2. But, since this error occurs only a finite number of times (three 
times at most), the overall accuracy of the method remains of order 3. 

5. NUMERICAL EXPERIMENTS 

In this section, we describe the numerical experiments which have been performed 
for two cases of the problem of Section 2. In the first case, which corresponds to a 
material which is a poor heat conductor, vaporization occurs before the disap- 
pearance of the solid phase. In the second case, which corresponds to a good heat 
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conductor, the solid phase disappears before the appearance of vapor. For simplicity, 
since we are more interested in the numerical method itself than in the physical 
significance of the results, we will not specify the physical units which are used. 

5.1. Problem 1 

We consider the multiphase problem of Section 2 with the following choice of the 
data: 

a, = 1, u’(x) = u” = 27, F(t) = F = 2500. 

The material is characterized by the constants: 

c, = c, = 4944, K, = K, = 0.259, C, = 2160, 

C,, = 37200, u, = 1454, 24,. = 3000. 

First, we give numerical results which have been obtained for At = h = l/16. We 
have taken all the time steps equal to At except at the times of appearance and disap- 
pearance of a phase. Let tj E (ndt, (n + 1)At) be the time of appearance of a phase 
computed as indicated in Section 4.5; then, we take two time steps corresponding to 
the intervals (ndt, tj) and (fj, (n + 1)At). In this way, the values of t” remain integer 
multiples of At after the appearance of the new phase. 

u,, = 

FIG. 8. Problem 1. The temperature u(x, t) for fixed values of t (computed with A = h = l/16). 
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Vap I 
-_i f 

0 1 ; J 4 i 6 I R 9 ,,> 

FIG. 9. Problem 1. Appearance, movement and disappearance of the free boundaries (dt = h = l/ 16). 

FIG. 10. Problem 1. Speed of the free boundaries: S, = da/dt (computed with LIZ = h = I/16). 
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The curves of Fig. 8 represent the computed temperature u,,(x, t) for fixed values of 
t equal to t,, t,, tf and to integer values of 4dt. Figure 9 represents the displacement 
of the moving boundaries and Fig. 10 represents the speed of the moving boundaries, 
i.e., the function 

Sjq*(t) z'~((DU>&,hY tDu)*,h, t>y for j=l and2. 

In the numerical solution of the discrete problem, we have used the following test 
for stopping the iterations: 

I(sy;(t”+“) - S:.!k’)(tn+“))/Sl!~(tn+~)/ < E, (5.1) 

for vE (O,$, 1) andjE {1,2}, with Z=iteration number and E= 10-5. 
This test on the speed of propagation of the moving boundaries is more severe than 

a test on their position aj,h(t). The corresponding number of iterations is approx- 
imately equal to 6 in the average for t, < t < t,. and to 12 for t,, < t < tf. 

Remark. Each function Sj,h(t) is discontinuous at the times t” (since the 
functions (Du),,, and (Du),,, are discontinuous); but the discontinuities are too small 
to be noticeable on the curves of Fig. 10. Table I shows that the jumps of the function 
S,,,(t) are smaller than the error tolerated in the numerical solution of the discrete 
equations, except at the times which correspond to the first three time steps following 
the appearance of the moving boundary g, . The same observation is valid for the 
function S,,,(t). This does not mean that the existence of discontinuities for the 
computed functions has no importance: the influence of the discontinuities on the 
stability of the method has been proved in [ 7) and tested in ] I], 

Energy Balance 

Since the function F(t) is equal to a constant, it is trivial to integrate it exactly. 
Hence, the approximate solution u,, satisfies the conservation relation (2.17) exactly, 
according to Section 4.3. But, since uh is not computed exactly, an error is induced. 
Let us check the error on the energy balance between the initial time t = 0 and the 
final time t = t,. 

TABLE I 

Problem 1. Discontinuity Jumps of the Computed Speed of the First Moving 
Boundary (solid-liquid Interface): SST = S:,i’ -S:,, , for df = h = l/16 

s:., 6s: 

n, + 1 0.3 7 5 0 0.13667 0.13807 0.00 140 
n,+2 0.4 3 7 5 0.15706 0.1 5 7 18 0.00012 
n, + 3 0.5 0 0 0 0.1 6 2 4 3 0.16244 0.00001 
--- --- --- 

82 5.0 0 0 0 0.083273 0.0832740.00000i 

Note. The index n, = 6 corresponds to the time of appearance 1,. 



382 BONNEROT AND JAMET 

TABLE II 

Problem 1. Convergence of the Computed Values of f,, t, , t, and a,(t,) for At/h = 1 

h t 171 1, ‘I a,@,) 
- ~ ~-- 

114 0.31_6_ 1 5 0 1.6 310 3 4 
0.3 2:8 L 

9.j7 5 4 6 4 0. 7 iA! 6 4 9 
l/8 9 7 1 . 6 1 O 0.7 9 7 _ _ _ _ _ , 3 i$- 1 

3 414 
9 .L!-.-v-2 ’ 

l/16 0.3 2 7 6:7 1.6 6 9.3 8 7:l 
3:2 L _. _ _ . _ 

9 0.7 3 3 
, 

617 
l/32 0.3 2 7 6!8 1.6 3 4i3 9 9.3 8 7:O 8 0.7 3 3 618 

The computed values of the terms of the conservation relation (2.20) are equal to 

E, = 7055.081, E, = 4345.672, E, = 2160, 

E, = 9907.216, E, =O, E, = 23,468.03. 

Hence, 

E = E, + E, + E, + E, + E, = 23,467.97, 

E, - E = 0.06, 

(E, - E)/E, - 3 x IO-‘. 

The relative error on the energy balance is of the same order as the error tolerated 
in the numerical solution of the discrete problem (parameter e of (5.1)). 

Convergence and Accuracy 

Table II gives the computed values of t, , 1J, , t f and aI for decreasing values of h 
and At/h = 1. It shows that, for h = l/16, the relative error on these values is inferior 
to 10P4. The corresponding computation time is equal to 117 set on a CDC 7600 
computer. 

Let us note that it has been impossible to compute the order of accuracy of the 
method as in [ 11, because the regularity of the convergence is perturbed by 

(i) the discontinuous variation of the number of finite elements, 

(ii) the irregular variation of the time steps dt” at the times of appearance and 
disappearance of the phases. 

Yet, the convergence seems to be as fast as in [ 1 ] (third order accuracy). 
Figure 11 represents the set of all finite elements for h = l/ 16 and At = l/4. 

Starting Motion of the Free Boundaries 

According to the remark of Section 2.2, we expect the free boundaries to start with 
an initial speed equal to zero. This property does not appear clearly on the curves of 
Fig. 10. For a more thorough study of the motion of the free boundaries just after 
their appearance, we have made computations with a smaller time step: for each 
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0 I 2 3 4 5 6 7 8 9 IL 

FIG. 11. Problem 1. The set of all finite elements for h = l/16 and 

t 

At = 114. 

.32 33 .31 35 .36 31 .38 39 .10 .111 .42 .43 14 

FIG. 12. Problem 1. Speed of the solid-liquid interface, S, = du,/dt, near the time of its appearance 
I,,, = 0.32768, computed with h = l/16. At = h/IO. 
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FIG. 13. Problem 1. Speed of the liquid-vapor interface, S, = dq/dt, near the time of its appearance 
f,. = 1.6343, computed with h = l/16, At = h/IO. 

boundary we have taken At = h = l/16 until the time tj at which it appears, then 
At = h/10 for t > tj. The results are represented on Figs. 12 and 13. 

5.2. Problem 2 

This problem is the same as Problem 1 except for the material which is charac- 
terized by the following values of the constants: 

cr = c, = 1.041~ with p = 2.77, K, = 1.73, K, = 0.865, 

c, = 4OOp, c, = 10,7OOp, u, = 638, u,, = 2480. 

The curves of Figs. 14, 15 and 16 illustrate the results obtained for At = h = l/16. 
They show that the temperature on the right boundary x = 1 has not reached the 
vaporization temperature U, at the final time tf at which the solid disappears. 

Energy Balance 

We have: 

E, = 1761.861, E, = 1943.151, E, = 1108, 

E,=O, E, =O, E, = 4813.049, 
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FIG. 14. Problem 2. The temperature u(x, t) at all time steps (computed with At = h = l/16). 

.I =5At 
I=461 
.t=t, 
.t=3At 

t=zAt 
.t=At 
-t=o 

X 
- 

x Gal(t) 

\J” j 

- 0 .1 .2 .3 I .‘I .d .I 8 9 1.0 

FIG. 15. Problem 2. Appearance, movement and disappearance of the free boundary 
(A/= h = l/16). 
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FIG. 16. Problem 2. Speed of the free boundary (computed with df = h = l/16). 

Hence, 

E=E,+E,+E,+E,+E,=4813.012, 

E, -E = 0.037, 

(E, -E)/E, - 7 x 10-6. 

The relative error on the balance of energy is of the same order as the parameter E 
of (5.1). 

Convergence 

Table III gives the values of t ,,,, tf and the final temperature on the right boundary 
ur= u( 1, tf) computed for several values of h, with At/h = l/4. It shows that the 
relative error on these values is of the order of lop5 for h = l/8 and At = l/32. The 
corresponding computation time is equal to 26 set on a CDC 7600 computer. 

Remark. If we take At/h = 1, the main contribution to the error comes from the 
time discretization. For example, we have observed that the values computed with 
Ax = l/8, l/16, l/32 and At = l/16 are almost identical; but, with At = 1 j32 we get 
values which are different from the previous ones. This observation has led us to 
choose At/h = l/4. This reduction of the time step was not imposed by a stability 
condition. It is normal to take a smaller time step in problem 2 than in problem 1 
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TABLE III 

Problem 2. Convergence of the Computed Values of t m, tf and u, = u( 1, tf) for At/h = i/4 

I,/4 0.2 3 418 L 5 0 1.9 215 3 6 2 3 4:9 1 8 _ _ , L__--__I Lee’-.., 
l/8 0.2 3 4 0 017 1.9 2 3 8j3 2 3 4 7.918 
l/16 0.2 3 4 0 oj2 1.9 2 3 811 2 3 4 7.9i6 

- I 

FIG. 17. Problem 2. Speed of the free boundary near the time of its appearance (h = l/16, 
At = h/10). 

since the evolution of the phenomena is faster (tf= 9.3870 in Problem 1 vs. 
tf= 1.9238 in Problem 2). 

Starting Motion of the Free Boundary 

Figure 17 represents the speed of the solid-liquid interface in the neighborhood of 
the appearance time t, = 0.23400. It shows that the speed increases smoothly. 
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CONCLUSION 

In this paper, we have shown how the method of [l] can be extended in order to 
deal with multiphase problems involving the appearance and disappearance of phases. 
Other extensions are also possible, in the same way as our previous method [ 141 has 
been extended to problems involving convection, by Varoglu and Finn ] 171, and 
involving overheating of the liquid phase by internal absorption of radiation, by 
Gautier and Joeckle [ 151, and used as part of an algorithm for solving an inverse 
Stefan problem by Jochum [ 161. 
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